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In this paper, the nonlinear dynamics of an axisymmetric liquid bridge held captive 
between two coaxial, circular, solid disks that are separated at a constant velocity 
are considered. As the disks are continuously pulled apart, the bridge deforms 
and ultimately breaks when its length attains a limiting value, producing two drops 
that are supported on the two disks. The evolution in time of the bridge shape 
and the rupture of the interface are investigated theoretically and experimentally 
to quantitatively probe the influence of physical and geometrical parameters on the 
dynamics. In the computations, a one-dimensional model that is based on the slender 
jet approximation is used to simulate the dynamic response of the bridge to the 
continuous uniaxial stretching. The governing system of nonlinear, time-dependent 
equations is solved numerically by a method of lines that uses the Galerkin/finite 
element method for discretization in space and an adaptive, implicit finite difference 
technique for discretization in time. In order to verify the model and computational 
results, extensive experiments are performed by using an ultra-high-speed video 
system to monitor the dynamics of liquid bridges with a time resolution of 1/12 th 
of a millisecond. The computational and experimental results show that as the 
importance of the inertial force - most easily changed in experiments by changing 
the stretching velocity - relative to the surface tension force increases but does not 
become too large and the importance of the viscous force - most easily changed by 
changing liquid viscosity - relative to the surface tension force increases, the limiting 
length that a liquid bridge is able to attain before breaking increases. By contrast, 
increasing the gravitational force - most readily controlled by varying disk radius or 
liquid density - relative to the surface tension force reduces the limiting bridge length 
at breakup. Moreover, the manner in which the bridge volume is partitioned between 
the pendant and sessile drops that result upon breakup is strongly influenced by the 
magnitudes of viscous, inertial, and gravitational forces relative to surface tension 
ones. Attention is also paid here to the dynamics of the liquid thread that connects 
the two portions of the bridge liquid that are pendant from the top moving rod and 
sessile on the lower stationary rod because the manner in which the thread evolves in 
time and breaks has important implications for the closely related problem of drop 
formation from a capillary. Reassuringly, the computations and the experimental 
measurements are shown to agree well with one another. 
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1. Introduction 
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Plateau (1863) and Rayleigh (1879) have shown theoretically that although an 
infinitely long, cylindrical column of fluid is an equilibrium shape in zero gravity, it is 
unstable to all infinitesimal-amplitude, axisymmetric perturbations whose wavelengths 
exceed the circumference of the cylinder (see, also, Michael 1981). Moreover, Plateau 
was able to show experimentally that a cylindrical column of fluid that is neutrally 
buoyant in the surrounding ambient fluid can be held in stable equilibrium between 
two coaxial solid disks of equal radii as a liquid bridge provided that the ratio of the 
length of the bridge to its diameter is less than a critical value. This critical value has 
been shown to lie between 3.13 and 3.18 by Plateau in his pioneering experiments 
and between 3.140 and 3.1417 by Mason (1970) through more refined experiments. 

When a static liquid bridge that is in stable equilibrium for times less than zero is 
impulsively set in motion at time zero and stretched uniaxially for times exceeding 
zero by continuously pulling apart the two disks at a constant velocity, it deforms 
gradually and contracts at its middle portion. Figure 1 illustrates the evolution in 
time of the shape of an axisymmetric water bridge that is surrounded by air and 
whose axis of symmetry lies along the direction of gravity (which acts downward in 
the photographs). The time sequence of photographs shows the transient shape of a 
bridge that is stretched by moving the top disk at a constant velocity of 0.6 cm s-l 
relative to the bottom disk which is stationary. Of great interest in the dynamics 
depicted in figure 1 is the fate of a thin liquid thread that as time advances develops 
and connects the two large liquid masses which are supported on the two disks during 
the necking and breakup of the bridge. During necking, the portion of the bridge 
below the thread tends to take on a spherical profile and that above the thread 
approximates well a liquid cone. Meanwhile, the length of the thread increases while 
its diameter decreases, as shown in figure l(h-j). When the length of the liquid bridge 
attains a limiting value, the thread ruptures (figure lj) and subsequently two large 
drops whose volumes may nevertheless be unequal are created such that one is pendant 
from the top disk and the other is sessile on the bottom disk. Furthermore, following 
the rupture of the liquid thread one or more satellite droplets may be generated and 
occupy the region between the pendant and sessile drops in some situations (not 
shown in figure 1). The satellite droplets, if they exist, are much smaller in size, or 
volume, than the supported drops. In this paper, a theoretical/experimental study is 
presented of the dynamics of uniaxially stretched liquid bridges in air. The focus here 
is on the effects of physical and geometrical parameters on the universal features of 
bridge deformation. Special attention is also paid to the development, extension and 
breakup of the liquid thread and the generation of pendant and sessile drops that are 
created subsequent to the breakup of the liquid bridge. 

The statics and dynamics of liquid bridges have attracted much attention for more 
than a century. However, interest in their response has been growing in recent 
years due to applications in fields as diverse as (i) the floating-zone technique for 
crystal growth where they provide useful idealizations (Brown 1988), (ii) controlling of 
thermocapillary convection in a liquid bridge, which is readily achieved by vibrating 
one of the supporting rods (Anilkumar et al. 1993), (iii) the spraying and atomization 
of liquids where a fundamental understanding of the breakup of liquid columns is 
essential (Schulkes 1993a; see, also, Schulkes 199327 and Papageorgiou 1995a,b), (iv) 
the fibre spinning process (Denn 1980), (v) the measurement of the surface tension, 
shear viscosity, and extensional viscosity of molten Newtonian and non-Newtonian 
liquids (Tsamopoulos, Chen & Borkar 1992; Tirtaatmadja & Sridhar 1993), and (vi) 
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(i) Experimental results 

(ii) Computational results 

(a) (b)  (c) (4 (4 (f) (g) (h) (4 ( j )  

FIGURE 1. Evolution in time of the experimentally measured and computed shape of a water 
bridge of volume of 0.04 cm3 and initial slenderness ratio of 2 that is held captive between two 
circular rods of equal radii of 0.16 cm and is stretched axially at a constant velocity of 0.6 cm s-': 
(a) t = 0 ms, (b)  t = 67 ms, (c) t = 175 ms, (d) t = 333 ms, (e) t = 427 ms, ( f )  t = 462 ms, 
(g) t = 469 ms, (h) t = 471 ms, (i) t = 471.5 ms, and ( j )  t = 472 ms, where t is the time measured 
from the instant when the upper rod is set into motion. 

agglomeration of particles (Ennis et al. 1990; Chen, Tsamopoulos & Good 1992). Of 
special interest to the present authors and yet another motivation is the close analogy 
between interface rupture during drop formation from a capillary (Zhang & Basaran 
1995, 1996) and liquid bridge breakup. 

Until about 1980, virtually all experimental and theoretical studies of liquid bridges 
were focused on the equilibrium shapes of bridges and their stability. Most of these 
works have addressed the situation in which an axisymmetric liquid bridge is held 
captive between two axially aligned circular disks of equal radii in the absence and 
presence of gravity (Haynes 1970; Gillette & Dyson 1971; Coriell, Hardy & Cordes 
1977; and Russo & Steen 1986, among others). Especially noteworthy among these is 
the work of Coriell et al. (1977) where it is shown that the maximum stable length of 
the bridge decreases significantly as the gravitational force increases. Studies of fully 
three-dimensional shapes of liquid bridges are scarcer but profiles of such menisci 
have been calculated by Patzek & Scriven (1982) for drops held captive between two 
crossed cylinders, Chen et al. (1992) for bridges held captive between non-parallel 
surfaces, and Brown & Scriven (1980) and Ungar & Brown (1982) for liquid bridges 
undergoing gyrosta tic rota tion. 

Although Mason (1970) demonstrated that it is possible to establish standing waves 
on the surface of a liquid bridge by oscillating the supporting disks or rods, it was not 
until after the work of Fowle, Wang & Strong (1979) that the dynamics and breakup 
of liquid bridges began to be studied extensively due to motivation provided by the 
European and American Space Programs. Fowle et al. (1979) carried out experiments 
similar to those performed by Mason (1970) and also carried out a linearized analysis 
of the oscillations of a bridge of an inviscid liquid undergoing irrotational flow. Much 
of the subsequent theoretical work on the dynamics of liquid bridges has either relied 
on one-dimensional models or taken the bridge liquid, and the fluid surrounding it, to 
be inviscid. The one-dimensional models have been developed under the assumption 
that the bridge is sufficiently slender so that the axial velocity is independent of the 
radial coordinate and depends solely on the axial coordinate and time. However, two 
fundamentally different one-dimensional models have been used to analyse the dy- 
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namics of liquid bridges. The first one is the inviscid slice model due to Lee (1974) and 
the second one is the model based on the so-called Cosserat equations (Green 1976). 

Meseguer (1983) studied theoretically by means of both the inviscid slice model 
and the Cosserat equations the breakup of axisymmetric liquid bridges of initial 
slenderness ratios, i.e. the ratio of the bridge length to the rod radius, close to those 
at their limits of static stability by subjecting them to axisymmetric disturbances. 
Meseguer & Sanz (1985) studied theoretically using the one-dimensional inviscid slice 
model the axisymmetric breakup of bridges under microgravity conditions and carried 
out experiments with nearly neutrally buoyant liquid bridges. Sanz (1985) studied 
both theoretically and experimentally the effect of an outer bath on the dynamics of 
axisymmetric liquid bridges. He studied the breakup of the liquid bridge theoretically 
by means of the one-dimensional inviscid slice model. Moreover, he constructed a 
linearized but inviscid model and carried out experiments to study the oscillations 
of the liquid bridge. Non-axisymmetric oscillations were later studied by Sanz & 
Diez (1989) who developed a linearized, inviscid theory and carried out experiments. 
Bridge oscillations due to variations in the level of microgravity are also of interest 
and have been studied by means of one-dimensional models. Zhang & Alexander 
(1990) used a one-dimensional model with viscosity to determine the response of 
liquid bridges subjected to harmonic disturbances. Meseguer & Perales (1991) used 
the one-dimensional Cosserat equations with viscosity and determined the response 
of liquid bridges to small but step changes in the level of microgravity. Much of the 
work in this area has been reviewed by Perales & Meseguer (1992) who have also 
studied experimentally and theoretically by means of the one-dimensional Cosserat 
equations with viscosity the oscillations of liquid bridges induced by vibrating the 
supporting rods. 

Because the assumption of restricting the bridge to be an inviscid liquid is severely 
restricting, Tsamopoulos and coworkers carried out several studies to elucidate the 
effect of finite viscosity on the dynamics of liquid bridges. Borkar & Tsamopou- 
10s (1991) carried out a boundary layer analysis to account for the effect of small 
viscosity and studied the infinitesimal-amplitude oscillations of axisymmetric, capil- 
lary bridges in the limit of large but not infinite Reynolds number. Tsamopoulos 
et al. (1992) studied the small-amplitude oscillations of liquid bridges of arbitrary 
viscosity. However, in contrast to the case of oscillations of free drops (cf. Miller & 
Scriven 1968), the presence of solid boundaries gives rise to an implicit eigenvalue 
problem such that the determination of each eigenmode of oscillation involves an 
infinite summation (cf. the case of oscillating pendant drops studied by Strani & 
Sabetta 1988). Therefore, Tsamopoulos et al. (1992) used the finite element method 
to reduce the linearized perturbation equations to an algebraic generalized eigen- 
value problem, which they then solved to obtain the linearized eigenfrequencies of 
oscillation and damping rates. Subsequently, Chen & Tsamopoulos (1993) used the 
Galerkin/finite element method and Mollot et al. (1993) carried out experiments to 
study the finite-amplitude, forced oscillations of liquid bridges induced by vibrat- 
ing the top rod while holding the bottom rod fixed. Through their fundamental 
studies, Tsamopoulos et al. (1992) and Chen & Tsamopoulos (1993) showed that 
the resonant frequency of oscillation decreases and the damping rate increases lin- 
early with the oscillation amplitude. These authors then demonstrated that careful 
measurement of these two quantities, coupled to the computations, can be used to 
provide accurate values of physical properties such as viscosity and surface ten- 
sion of the bridge liquid, in particular for high-temperature molten ceramics and 
semiconductors. 
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By contrast to the problem of an oscillating liquid bridge, the problem of a 
stretching liquid bridge has received relatively little attention to date. Moreover, 
virtually all of the previous theoretical and experimental work on stretching liquid 
bridges has been motivated by and aimed at characterizing the rheological response 
of polymeric liquids to uniaxial extension. Motivated by the desire to simulate 
the extensional rheometry experiments of Sridhar et al. (1991), Shipman, Denn & 
Keunings (1991) used the finite element method to solve the free boundary problem 
that describes the stretching of a viscoelastic liquid bridge. Although this was 
a pioneering computational study, these authors experienced numerical difficulties 
because their code required that the length of the computational domain be fixed in 
the axial direction, i.e. the direction in which the bridge is being elongated. Kroger 
et al. (1992) examined the deformation of liquid bridges of large volumes in a 
series of simple stretching experiments in a Plateau tank in order to understand the 
influence of various forces (i.e. interfacial tension, inertial, and viscous forces) on the 
deformation and breakup of liquid bridges. Based on the stretching behaviour of 
bridges of various Newtonian liquids, Kroger et al. (1992) observed that while the 
interfacial tension force contracts and, eventually, breaks a stretching liquid bridge, 
inertial and viscous forces tend to stabilize the bridge surface and significantly slow 
down its breakup. These authors found that at large disk velocities, the bridge shapes 
do not attain equilibrium profiles appropriate for the instantaneous value of the 
slenderness ratio and the limiting length of the bridge exceeds the critical length of a 
static bridge at its limit of stability. These authors further found that the effects of 
inertia on the dynamics of a stretching bridge cannot be neglected even at elongation 
rates as low as 0.1 s-'. Moreover, it is noteworthy that the minimum value of the 
bridge radius reported in these experiments was about 4% of the initial radius, which 
indicates a lack of understanding of the final stages of the breakup. Kroger & Rath 
(1995) carried out a set of beautiful visualization experiments in which they utilized 
a sheet of light to illuminate the motion of a set of tracer particles inside stretching 
liquid bridges. These authors then determined the local rates of elongation and 
shear rate distributions inside the bridges from the pathlines of the tracer particles. 
Gaudet, McKinley & Stone (1994) used the boundary integral method to determine 
the transient deformation of Newtonian liquid bridges without breakup in the limit 
of Stokes flow as a preliminary to the design and interpretation of experiments for 
measuring extensional viscosity of non-Newtonian fluids. 

Hence, although qualitative features of the dynamics of stretching liquid bridges are 
known through the previously cited studies, a quantitative understanding of the effects 
of geometric variables and physical properties that govern the nonlinear deformation 
and breakup of stretching liquid bridges has heretofore been lacking. These insights 
are gained in this work by a dual-pronged approach that places equal emphasis on 
computation and experiment. In the computations, a system of equations based on a 
one-dimensional model of the stretching liquid bridge is solved by the Galerkin/finite 
element method. The one-dimensional equations are those that result from the 
transient Navier-Stokes equation and accompanying interfacial boundary conditions 
by either (i) retaining the leading-order terms in a Taylor series expansion in the radial 
coordinate of the velocity and pressure fields and free-surface location (Eggers & 
Dupont 1994) or (ii) carrying out an asymptotic expansion under a slender-jet or long- 
wave approximation to capture the leading-order dynamics (Papageorgiou 1995~). 
The experiments rely on an ultra-high-speed motion analysis and video system that 
can monitor instantaneous shapes of stretching liquid bridges with a time resolution 
down to 1/12 th of a millisecond. Section 2 presents the one-dimensional equations, 
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FIGURE 2. Schematic of a liquid bridge held captive between two rods under gravity that highlights 

certain dimensions that are useful in describing bridge deformation and breakup. 

boundary conditions, and initial conditions that govern the dynamics. The numerical 
method used to solve the set of evolution equations and associated boundary and 
initial conditions is described in $3. Section 4 describes the experimental apparatus, 
materials, and methods of data acquisition and analysis. Section 5 presents results 
of detailed computations and compares the numerical predictions to experimental 
measurements. In both $5 and $6, concluding remarks, analogies are drawn between 
the present problem and the closely related one of drop formation from capillaries. 

2. Problem formulation 
The system is an axisymmetric bridge of fixed volume V of an incompressible, 

Newtonian liquid of spatially uniform and constant viscosity p and density p. As 
shown in figure 2, the bridge is captured between and is coaxial with two solid circular 
disks or rods of equal radii R that are separated by an initial distance Lo from each 
other. The common axis of symmetry of the bridge and the disks is vertical and 
lies along the direction of the gravity vector g. The liquid wets completely the two 
planar surfaces of the disks: the two contact lines are circles that are pinned to the 
edges of the disks, irrespective of the state of motions of the bridge and the disks. 
Here the top disk is taken to move upward along the axis of symmetry at a constant 
velocity Urn while the bottom disk is taken to be stationary. The ambient fluid - here 
air - exerts uniform pressure and negligible viscous drag on the bridge. The surface 
tension CJ of the liquid-gas interface is also spatially uniform and constant in time. In 
what follows, it is convenient to define a cylindrical coordinate system {r ,  z ,  q5), whose 
origin lies at the centre of the lower disk surface, and where r denotes the radial 
coordinate, z the axial coordinate measured in the direction opposite to gravity, and 
4 the azimuthal angle. For the axisymmetric configurations of interest in this paper, 
the problem is independent of the azimuthal coordinate. 

Isothermal, transient flow of a viscous liquid inside a stretching bridge is governed 
by the Navier-Stokes system and appropriate boundary and initial conditions. Follow- 
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ing Eggers & Dupont (1994) and Papageorgiou (19954, this spatially two-dimensional 
system of partial differential equations is reduced to a spatially one-dimensional sys- 
tem as discussed in the Introduction. The equations that govern the axial velocity 
u = u(z, t )  and the bridge profile h = h(z,  t ) ,  where t is time, are 

Equations (1) and (2) are already dimensionless because length is measured in units 
of R and time in units of z = ( P R ~ / ~ ) ' / ~ .  With these choices for the length and time 
scales, the velocity scale is not independent but is given by U = R/z  = ( ~ / p R ) l / ~ .  
In equations (1) and (2) and throughout the remainder of this paper, variables that 
appear with a tilde over them are dimensionless counterparts of those without tildes. 
In equation (l), Oh = ,u/(pRo)'12 is the Ohnesorge number, which measures the 
importance of viscous forces relative to surface tension forces and G = pR2g/o, 
where g is the magnitude of the acceleration due to gravity, is the gravitational Bond 
number, which measures the importance of gravitational forces relative to surface 
tension forces. Moreover, the modified dimensionless pressure p7 which is measured 
in units of o / R  and whose axial derivative appears in equation (l), is related to twice 
the dimensionless local mean curvature of the interface by 

The dimensionless pressure 9 inside the liquid bridge to leading order is then given 
by (cf. Eggers & Dupont 1994) 

As shown by Papageorgiou (1995~)~  keeping the full curvature term, equation ( 3 ) ,  
in the asymptotically correct slender bridge equation (1) is not rational. However, 
Eggers & Dupont (1994) who studied drop formation and Ruschak (1978), Kheshgi 
(1989), and Johnson et al. (1991) who studied the dynamics of thin films over 
flat and cylindrical substrates have also adopted this approach because doing so 
results in a better description of the nonlinear evolution of interface shapes than 
truncating the curvature expression at the order demanded by the leading-order 
slender jet asymptotics. Moreover, we go beyond these previous works in which 
the full expression for twice the local mean curvature is utilized and carry out a 
complementary program of laboratory observation to evaluate the validity of this 
approximation. 

Equations (1)-( 3) are solved subject to the boundary conditions that the three-phase 
contact lines, where the bridge liquid, the ambient fluid, and the solid surfaces meet, 
remain pinned for all time 5 > 0: 

h"(5 = 0,q = 1, h"(Z = L/R,q = 1 (5a7 b)  

and the axial velocity vanishes at the bottom disk surface and equals the disk velocity 
at the top disk surface: 

a(Z = 0,q = 0, a(Z = L/R, 8 = Urn.  (6a, b)  
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In equations ( 5 )  and ( 6 )  L is the dimensional instantaneous length of the liquid bridge 
and in equation (6b )  the dimensionless disk velocity 0, = Um/U = U , ( ~ R / O ) ' / ~  
measures the importance of inertial forces relative to surface tension forces. 

We seek solutions of the nonlinear, time-dependent partial differential equations 
(1)-(2) subject to boundary conditions (5)-(6). Initial conditions must be specified 
to complete the mathematical statement of the problem. In this paper, attention is 
restricted to situations in which the bridge is impulsively set into motion from an 
initial rest state that corresponds to a stable equilibrium shape of a captive bridge 
of volume V/R3, initial slenderness ratio Lo/R, and under the condition that the 
gravitational Bond number equals some specified value G, namely 

&(a, f = 0)  = hO(z"), (7) 

v"(z", f = 0)  = 0, (8) 
where ho is the interface shape function of the equilibrium shape. The equilibrium 
bridge shape is governed the Young-Laplace equation (see e.g. Brown & Scriven 
1980) 

where 2 2  is twice the dimensionless local mean curvature of the interface given by 
equation ( 3 )  and K is the reference pressure. When the volume of the bridge is fixed 
to be a certain amount, the interface shape function ho(z") and the reference pressure 
K are determined by solving simultaneously the Young-Laplace equation (9) and a 
constraint of fixed bridge volume 

- 2 2  = K - Gz", (9) 

Therefore, whereas the axisymmetric equilibrium shape of a liquid bridge is gov- 
erned by three parameters, the gravitational Bond number G, the dimensionless 
volume V/R3, and the slenderness ratio Lo/R, the dynamics of stretching and break- 
ing bridges are governed by five parameters, namely by the Ohnesorge number Oh 
and the dimensionless disk velocity 0, in addition to the three parameters that govern 
the behaviour of static bridges. 

The dimensionless variables used in this paper are of course not unique. One could 
alternatively use the disk velocity U ,  as the velocity scale in non-dimensionalizing 
the governing equations and boundary and initial conditions. In this formulation, Oh 
and 0, are replaced by a Reynolds number, Re G pRU,/p, and a capillary number, 
Ca = pU,/o. 

In 55, two dimensional measures of bridge deformation are convenient for describing 
the evolution in time of the shape of the stretching bridge. As shown in figure 2, 
these are the instantaneous length of the bridge measured along its axis, L, and the 
instantaneous radius of the bridge neck at the location where it is narrowest, hmjn. 
Separated by this minimum radius, a bridge liquid can be divided into two portions 
that are supported on the two disks during its necking and breakup. When G is 
non-zero, the shape of the bridge is no longer symmetric about the axial location at 
which its radius is a minimum and the portion of the bridge attached to the lower 
disk is of larger volume than that attached to the upper disk. In $5, the volumes of 
the two supported drops that are generated subsequent to the breakup of the bridge 
are also monitored for further characterizing the dynamics. Moreover, throughout 
the remainder of the paper, Ld denotes the limiting length or the maximum length 
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attained by the bridge at the instant when it breaks and t refers to time measured 
from the instant at which the stretching of the bridge commences. 

3. Finite element analysis 
The governing set of one-dimensional, nonlinear equations (1)-(2) is solved nu- 

merically in this work by the Galerkin/finite element method (Strang & Fix 1973; 
Lapidus & Pinder 1982). In this paper, the mathematical problem is reformulated by 
introducing a new variable f2 so that the highest-order derivative appearing in the 
governing equations is of second order. This reformulation requires that equations 
(1)-(2) be augmented by the equation 

With this reformulation, it is only required that the basis functions that represent the 
unknowns h, Q, and v" be continuous or that they fall into a class of interpolating 
functions known as Co basis functions (Strang & Fix 1973). The domain 0 d z" d L / R  
is divided into N E  elements. The unknowns are then expanded in terms of a series 
of linear basis functions @(z"): 

N 

h(S, i j  = c h,(ij&z"), 

Q(5, i j  = c Q,(Z)(b'(z"), 

qz", i j  = c U i ( i j q V ( z " ) ,  

(12) 
i=l 

N 

(13) 
i=l 

N 

(14) 
i= 1 

where hi, Qi, and vi are unknown coefficients to be determined and N = N E  + 1. 
The Galerkin weighted residuals of equations (l), (2), and (11) are constructed 

by weighting each equation by the basis functions and integrating the resulting 
expressions over the computational domain. The weighted residuals of equation 
(1) are next integrated by parts to reduce the order of the highest-order derivative 
appearing in them and the resulting expressions are then simplified because of 
boundary conditions (5)-(6). The residual equations are then cast into a fixed 
is0 arametric coordinate system 0 d i" d 1 by the isoparametric mapping z" = 
Ci=lzi+i(<) (Strang & Fix 1973), where the zi denote the locations of the nodes or 
the mesh points. Because the top boundary is moving, the domain length changes 
as time advances. This is accounted for in this paper by allowing the nodes of the 
finite element mesh zi to move proportionally to the motion of the top rod (Kistler 
& Scriven 1983; Kheshgi & Scriven 1983; see, also, Basaran 1992): 

I g  

L .  
Z i ( i j  = Z i ( S  = 0)-, I = 1,. ..,I?. 

LO 

The evaluation of the residuals then requires that time derivatives at fixed locations 
in physical space be cast into time derivatives at fixed isoparametric locations by 
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= U,z"/(L/R). With these manipulations, the residual equations become 

and 

R' K -  - l1 [ $ + (5 - 

where z " ~  = dz"/d< and i = 1,. . . , N .  
The Galerkin weighted residuals (17)-(19) are a set of nonlinear ordinary differential 

equations in time. In this paper, time derivatives are discretized at the pth time step, 
At, = t, - tp-l, by either first-order backward differences or second-order trapezoid 
rule. With time discretization in place, the resulting system of 3N nonlinear algebraic 
equations is solved by Newton's method. Four backward-difference time steps with 
fixed A;, provide the necessary smoothing (Luskin & Rannacher 1982) before the 
trapezoid rule is used. Moreover, in this paper a first-order forward-difference 
predictor is used with the backward-difference method and a second-order Adams- 
Bashforth predictor is used with the trapezoid rule. The norm of the correction 
provided by Newton iterations, / I  d,+l I t r n ,  is an estimate of the local time truncation 
error of the trapezoid rule (Gresho, Lee & Sani 1979). The time step is chosen 
adaptively by requiring the norm of the time truncation error at the next time step 
to be equal to a prescribed value, E ,  Atp+l = Atp ( E /  / /  d,+l llm)''3. Relative error of 
0.1% per time step, E = lop3, is prescribed in the computations. 

As summarized in the previous section, the equilibrium shape of a static bridge 
is required as an initial condition on the interface shape function in the dynamic 
calculations. The equilibrium shape of a bridge of slenderness ratio Lo/R and volume 
V / R 3  is determined at a specified value of the gravitational Bond number G by 
Galerkin/finite element analysis (see, e.g., Brown & Scriven 1980). Both the algorithm 
for calculating static shapes and that for computing the transient evolution of shapes 
of stretching bridges have been programmed in FORTRAN and the resulting codes have 
been run on a Silicon Graphics Indigo 2 Extreme workstation at the Oak Ridge 
National Laboratory. Once ho(z") is known, the top rod is impulsively set into motion 
and the computations are continued until h,i,/R falls below a specified value, which 
is typically set to 

Several tests are done to ensure the accuracy of the calculations. First, the volume 
of the liquid bridge 

- _ -  

unless otherwise specified. 

V LIR  

R3 = 
h2d2 

is monitored throughout the computations. In all of the cases reported in this paper, 
the change in volume is always less than 0.01%. Second, the transient code was run 
with the disk velocity set equal to zero and by starting with an initial shape profile that 
is slightly perturbed from the equilibrium shape, namely ho(2) = @(a) + h'(z"), where 
the superscript eq denotes the equilibrium shape and h' is the shape perturbation. 
In this manner, it was shown that static stability limits well known in the literature 
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FIGURE 3. Convergence of computed values of the bridge profile and pressure and velocity fields 
with mesh refinement. 

(Plateau 1863; Rayleigh 1879; Corriell et al. 1977) could be predicted with an 
accuracy better than 0.1%. 

To study the sensitivity of computed solutions to mesh refinement, the domain was 
divided into N E  uniformly spaced elements. Table 1 shows the sensitivity to mesh 
refinement of computed values of the dimensionless limiting length, Ld/R, which 
is the measure of the bridge extension when it breaks, and the resultant partial 
volume, Vl/ V ,  

7-c 

which is the ratio of the volume of the sessile drop that ends up on the lower disk 
upon bridge breakup to that of the entire bridge. The computational results shown 
are for the case in which the initial shape is that of a perfect cylinder of slenderness 
ratio Lo/R = 3, the motion is initiated by impulsively changing at time zero both 
the disk velocity and the gravitational Bond number from zero to urn = 0.028 and 
G = 0.342, respectively, and setting Oh = 2.932 x lop3. These dimensional parameters 
correspond to the situation in which the bridge liquid is water at 22.5"C, the disk 
radius R = 0.16 cm, and the disk velocity Urn = 0.6 cm s-l. Figure 3 shows the 
variation with the dimensionless axial coordinate of the dimensionless interface shape 
function, dimensionless pressure (see (4)), and dimensionless axial velocity at the 
instant in time when hrni,/R = 0.004 obtained with 100, 400, and 1600 elements. 
Figure 3 shows that the 100 element mesh does a good job of representing the 
interface shape everywhere except in the region where a liquid thread (neck or throat) 
connects the two halves of the bridge. In addition to the wiggles in the interface 
shape profile, large-amplitude oscillations are visible in the pressure and velocity 
profiles, which indicate that too few elements have been deployed in the tessellation. 
Oscillations in the interface shape profile have virtually disappeared but ones in the 
pressure and velocity profiles are still visible when the number of elements is increased 
to 400. As shown in figure 3, the computed values of all three quantities are devoid 
of spurious wiggles when the number of elements equals 1600. When the number 
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Number of elements, N E  Ld/R 

50 3.760 
100 3.748 
200 3.686 
400 3.670 
800 3.666 

1600 3.665 
3200 3.665 

V , / V %  

84.53 
86.48 
87.62 
87.88 
87.93 
87.94 
87.94 

TABLE 1. Sensitivity of computed values of the limiting length, Ld/R, and partial volume, V l / V ,  of 
a water bridge to mesh refinement. The parameters for which the computations have been carried 
out are stated in the text. 

of elements is increased from 1600 to 3200, the maximum change in the computed 
values of the variables anywhere in the computational domain, including the pressure 
and velocity at the several large peaks that are visible in figure 3, is less than about 
0.1%. Table 1 shows that computed values of both the limiting bridge length Ld/R 
and the partial volume Vl/V are changed less than 0.02% when the number of 
elements is increased from 800 to 1600. The results of figure 3 and table 1 make 
plain that although a couple of hundred uniformly spaced elements are adequate for 
obtaining values of h", Ld/R, and V / V ,  with about 0.5% accuracy, about five to ten 
times as many elements are required to obtain pressure and velocity fields everywhere 
inside the liquid bridge with the same accuracy. In addition to the accuracy tests 
described in this section, the accuracy of computational predictions is also compared 
to experimental measurements in $5 to ensure that the one-dimensional model is true 
to reality. 

4. Experimental approach 
The experiments have been designed to obtain quantitative information on the 

dynamics of stretching liquid bridges in order to compare the measurements with 
and verify the predictions of the one-dimensional model presented earlier. In the 
experiments, attention is paid in particular to the evolution in time of the shape of a 
stretching bridge as it is nearing breakup and the volume of the two supported drops 
that end up on the disks subsequent to the breakup of the bridge. 

4.1. Apparatus 

The liquid bridge is vertically confined or held captive between the parallel surfaces 
of two stainless steel, cylindrical disks or rods of equal radii that are coaxial with the 
bridge. The radii of the rods ranged between 0.08 and 0.32 cm in the experiments. 
The parallel surfaces of the rods are machined flat and perpendicular to the rod 
wall so that the liquid wets completely these surfaces and the three-phase contact 
lines of the bridge remain pinned on the sharp edges of the two faces. Fixing the 
contact lines during the stretching and breakup of a liquid bridge is important because 
experimental measurements show that the shape of the bridge and the distribution of 
liquid volume between the two faces subsequent to bridge breakup vary directly with 
the length, or circumference, of the contact lines. The upper rod is connected to a 
translation stage that is reassembled from a Harvard Apparatus syringe pump (Model 
975) and allows the top rod to move upward at an adjustable, constant velocity of 
up to 0.6 cm s-l while providing a sufficiently high ramping acceleration from a state 
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p(g ~ m - ~ )  p(g cm-' SKI) a ( g  s-*) 

Water 0.996 0.01 73.0 
20% glycerol 1.048 0.018 72.4 
50% glycerol 1.127 0.061 70.0 
70% glycerol 1.182 0.299 68.5 
85% glycerol 1.223 1.129 66.0 
100% glycerol 1.262 14.99 63.0 

TABLE 2. Physical properties of liquids and liquid-air interfaces in experiments 

of rest to one of uniform translation. Hence, the time period that the translation 
stage takes to attain the desired constant velocity U,  is much shorter than the time 
period over which the bridge stretches and eventually breaks. The whole experimental 
apparatus, including parts to be described in what follows, is placed on a vibration 
isolation table from Newport. 

The most important piece of equipment, which makes possible the wealth of 
quantitative experimental results to be presented in the next section, is a high- 
speed motion analysis/video system, the Kodak Ektapro Model EM 1012 Electronic 
Memory Motion Analyzer, and associated video hardware. The Ektapro system is 
composed of an intensified imager, i.e. the camera, and a processor which can record 
1000 full images or 12000 partial images per second. 

Although the Ektapro stores the images digitally on a solid-state device, this 
information is subsequently transferred onto tape and replayed with a Panasonic 
model PV-54990 S-VHS recorder. Recorded images of transient bridge profiles are 
viewed on a Sony colour video monitor, model PVM-1341. Images of stretching 
bridges are then analysed in one of the two following ways. In the first of these, 
the images are digitized by means of a frame grabber, a Data Translation DT2851 
board, that is installed in an IBM-compatible PC, and an edge detection routine is 
employed to locate the interfacial profile from the digitized images. Otherwise, the 
images are analysed with a similar capability that comes with the Ektapro system. 
Reassuringly, the two systems for image analysis have been shown to produce results 
that are in excellent agreement with each other. The image digitization systems allow 
rapid and accurate determination of the loci of liquid-gas interfaces from which 
the instantaneous shape of the bridge, i.e. L and h, and the volumes of the bridge 
and resultant drops are evaluated. Resolution of the digital images is typically 185 
pixels cm-' or larger, and the calibration is done with a resolution target, USAF- 
1951 by Newport. The typical bridge size is 0.2 cm or larger and can be measured 
within an error less than 3%, except when the bridge neck becomes vanishingly thin 
during its breakup. The volumes of axisymmetric bridges and resultant drops on the 
two rods are calculated by integrating their cross-sectional areas which are readily 
obtained from the loci of interface shapes. This volume measurement also provides 
an independent check for ensuring that the proper amount of liquid is actually being 
placed in the bridge (see below). 

4.2. Materials 
The bridge liquids used in the experiments are well recognized standards, e.g. triple- 
distilled water from Millipore Corp. and glycerol from EM Science in distilled water. 
Glycerol is used without further modification and dissolved in distilled water at the 
specified concentrations by weight. The physical properties of these liquid systems and 



220 X .  Zhang, R. S.  Padgett and 0. A. Basaran 

the surface tensions of these liquids in air at room temperature (see below) are given 
in table 2. The viscosity and density of water and glycerol solutions are taken from 
the literature (Timmermans 1960). The equilibrium surface tension of the liquid-air 
interfaces are measured using a pendant drop method (Harris & Byers 1989). 

In the experiments carried out, the aqueous glycerol solutions with different con- 
centrations have been chosen because of their desirable physical properties. Whereas 
the densities and surface tensions of these solutions are not very different from those 
of pure water, their viscosities can be made to vary by three orders of magnitude. 
Large variations in viscosity can result in significant differences in the evolution of 
the shapes of the bridges. 

In the experiments, the measurements were taken within 8 hours of preparation of 
the solutions. All experiments were performed at the room temperature of 22" +0.5"C. 

4.3. Procedures 
The methodology of the experiments is straightforward. In a typical run, a bridge is 
formed by depositing a desired quantity of liquid by means of a calibrated Eppendorf 
pipette into the space between two rods that are separated by a certain initial distance 
from each other. Special care is taken to ensure that no air bubbles have been trapped 
inside the liquid bridge, eliminating any uncertainty in the bridge volume and shape. 
The bridge is then given a few minutes to approach a static equilibrium state. At the 
end of this period, the top rod is set into motion in the upward direction at the desired 
velocity and measurements of the instantaneous shape of the bridge are recorded 
continuously until the bridge breaks up and forms two drops that are pendant from 
and sessile on the two parallel faces of the rods. Since the process of bridge stretching 
and breakup is extremely repeatable, as verified in the experiments, the present 
technique provides a reliable picture of the dynamic evolution of the bridge shape. 
Reproducibility of results has been found to be within 3% by making measurements 
with the same liquid system under the same conditions but at different times. 

4.4. Ranges of dimensionless variables 
Experiments have been performed by systematically varying the geometric parameters, 
including the disk radius R, the initial length of the bridge LO, the velocity of the 
upper disk Urn, and bridge volume V ,  and liquid physical properties and liquid-air 
surface tensions to gain insights into the effects of inertial, viscous, surface tension, and 
gravitational forces on the dynamics. The quantitative measurements to be reported in 
the next section have thus been made over wide ranges of the governing dimensionless 
groups. Namely, in what follows the Ohnesorge number is varied in the range of 
2.1 x lop3 to 5.9, the gravitational Bond number is varied in the range of 8.6 x 
to 2, the dimensionless disk velocity is varied in the range of 1.3 x to 4.8 x 
and the initial slenderness ratio is varied in the range of 1.75 to 3.5. Alternately, with 
Urn as the velocity scale, the Reynolds number is varied in the range of 2.7 x to 
19.1 and the capillary number is varied in the range of 5 x lop6 to 1.4 x lo-'. 

5. Results and comparisons between computations and experimental 
measurements 

Whereas it is straightforward in computations to vary any one dimensionless group 
while holding fixed all others, it is not possible to do so in laboratory experiments. 
Therefore, in what follows, most of the experimental results are presented in dimen- 
sional form. Nevertheless, the effects of all dimensional variables - rod radii R, liquid 
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FIGURE 4. Evolution in time of the dimensionless minimum radius hmi,/R of a water bridge of 
volume V = 0.04 cm3 and initial slenderness ratio Lo/R = 2 that is held captive between two rods 
of radii R = 0.16 cm and is stretched at a velocity Urn = 0.6 cm s-'. 

volume I/, velocity of the top rod Urn, initial bridge length LO, and physical properties 
such as viscosity, surface tension, and density, p,o, and p,  respectively - are studied 
quantitatively by both computational and experimental means in this section by sys- 
tematically varying one of these variables while maintaining virtually all others fixed. 
However, computational results that show the effect of each one of the dimensionless 
groups on the dynamics of stretching bridges are also presented; these additional 
results help clarify and provide further insights into the dynamics. In what follows, 
continuous curves are used to denote results obtained from the numerical solution 
of the one-dimensional equations and points or filled circles denote experimental 
measurements. 

5.1. Bridge deformation and breakup 
Figure 4 shows the history of the deformation of a water bridge of volume V = 
0.04 cm3 and initial slenderness ratio Lo/R = 2 that is held captive between two 
rods of radii R = 0.16 cm that are separated from each other at a constant velocity 
Urn = 0.6 cm s-l. Figure 4 depicts the evolution in time of both the dimensionless 
minimum neck radius, hmin/R, and bridge profile. It shows that good agreement 
exists between the experimental measurements and numerical calculations, with a 
maximum relative deviation in hmin/R of 7% between the measurements and the 
computations. This deviation is due primarily to the difficulty in experimentally 
measuring hmin as the neck radius tends to zero. Figure 4 shows that while the length 
of the liquid bridge increases linearly as time advances, ( L  - L0)/Um = t, the bridge 
initially deforms slowly, contracting at its middle portion and taking on a sequence 
of vase-like profiles as if minimizing its surface area. At longer times ( t  > 450 ms), 
however, when the length of the bridge has become sufficiently long, the neck starts 
to contract rapidly, resulting in a dramatic decrease in hmin/R with time. As the bridge 
approaches breakup, a liquid thread develops that connects the two large portions 
of liquid that are supported on the parallel faces of the two disks. During the final 
stages of breakup, the thread elongates while its radius, hmin, rapidly goes to zero. 
The elapsed time during this latter stage of bridge deformation is much shorter than 
the first stage and depends weakly on the operating parameters with a time scale of 
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FIGURE 5. Evolution in time of the dimensionless minimum radius hmi,/R of water bridges that are 
stretched at different velocities of Urn = 0.04, 0.6, and 5 cm s-'. The bridge volume, the rod radii, 
and the initial slenderness ratio are identical in all three cases and are given by V = 0.04 cm3, 
R = 0.16 cm, and Lo/R = 2, respectively. In figures 5 and 6, t d  denotes the time at the instant of 
bridge breakup. 

about 20 ms or less. Selected instantaneous shapes of liquid bridges that are inserts to 
figure 4 and these two drastically different regimes of bridge deformation - a gradual 
one that lasts on the order of hundreds of milliseconds and a more catastrophic one 
that lasts on the order of tens of milliseconds - make plain the similarities between 
the problem of liquid bridge deformation and breakup and drop formation from 
capillaries in the dripping mode (cf. Zhang & Basaran 1995). 

The weak dependence of the dynamics of the rapid elongation of bridges during 
their final stages of breakup on the operating parameters is made more apparent by 
figure 5 which shows calculated variations of hmin/R with time for three water bridges 
that are identical to each other in every respect except being subjected to different 
stretching velocities. Two things are done in figure 5 to better emphasize the period 
of bridge necking and breakup: first, time is measured backward from the instant 
when the bridge just breaks, t d  - t, with td - t = 0 standing for the instant of bridge 
breakup, and second, abscissa values are plotted as the logarithm of the transformed 
time. Figure 5 shows that within td - t - 20 ms, the curves depicting the variation 
of the minimum dimensionless bridge radius, hmi,/R, with time for the three bridges 
being stretched at velocities differing by an order of magnitude collapse onto a single 
curve. The overlapping of the three curves of h,i,/R versus time in figure 5 indicates 
that the profiles of the liquid threads evolve in a similar manner during the necking 
and breakup of the bridges regardless of the differences in the amounts of time taken 
by the bridges to break and the lengths attained by them prior to their breakup. The 
dependence of the maximum length attained by a bridge on its stretching velocity is 
discussed in detail in $5.2. 

Figure 6 shows the change with time of the axial location along the bridge at which 
its radius h is a minimum, 1/R (see figure 2), for the three bridges of figure 5. The 
axial location measured from the bottom stationary rod at which the radius h is a 
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td - t (ms) 
FIGURE 6. Evolution in time of the dimensionless axial location at which the bridge radius is a 
minimum lmin/R of water bridges that are stretched at different velocities of U,,, = 0.04, 0.6, and 
5 cm s-'. The bridge volume, the rod radii, and the initial slenderness ratio are identical in all three 
cases and are given by V = 0.04 cm3, R = 0.16 cm, and Lo/R = 2, respectively. 

minimum is found to increase initially as the portion of the liquid adjacent to the 
upper moving rod is pulled up with it. Figure 6 also shows that 1/R subsequently 
attains a maximum and then decreases rapidly until the bridge breaks at t d  - t = 0. 
The rapid fall of 1/R with time as t + td coincides with the development of a mass 
of virtually stagnant liquid that is sessile on the lower stationary rod and contracts 
its surface area to take on a nearly spherical profile (cf. figure 4). 

Further insights into the final stages of bridge deformation can be gained by 
examining the pressure and velocity distributions inside a bridge at the incipience of 
breakup. Figure 7 shows the interface shape, dimensionless pressure (equation (4)), 
and dimensionless axial velocity inside a water bridge under the same conditions as 
the bridge of figure 4. Figure 7 shows that aside from a thin liquid thread, two 
localized regions of extremely large pressure and velocity have developed as the fluid 
interface is about to rupture. First, in the vicinity of the axial coordinate where h is 
a minimum and the lower portion of the thread joins the virtually spherical mass of 
liquid that is sessile on the lower rod, with increasing value of the axial coordinate 
the mean curvature successively takes on a large positive value @Lax, a large negative 
value gmi,,, and then another large positive value @Eax 9 @La,. The first positive 
peak occurs at z" = z"L, m 2.218 c l /R,  where @Lax = 11.45. The minimum value of 
the pressure, Ymin = -67.52, is attained just below the axial location where h = hmin 
and ah/aZ = 0, z" = Zmin = 2.222. Just above the location where h is a minimum, 
at z" = z"',6, m 2.229, the pressure profile exhibits a positive peak, @tax = 185.49, 
which is the absolute largest pressure inside the liquid bridge at this instant in time. 
Figure 7 also shows that a second localized zone of large pressures is just starting to 
develop at the upper end of the liquid thread where it joins the mass of liquid that 
is pendant from the upward moving top rod. The velocity profile shown in figure 7 
provides further information on the details of the breakup process. First, the large 
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RGURE 7. Variation of the dimensionless bridge radius h/R ,  pressure @, and axial velocity 5 
with axial position inside a water bridge of volume V = 0.04 cm3 and initial slenderness ratio 
Lo/R = 2 that is held captive between two rods of radii R = 0.16 cm and is stretched at a velocity 
Urn = 0.6 cm s-l. Here ? = 62.89 and hmi,/R = 3.96 x lop3. 

and negative peak in the velocity profile, Emin = -36.53, in the vicinity of the location 
where h is a minimum and the thread joins the sessile drop, signals a net downward 
movement of liquid out of the thread and into the sessile drop. Second, the smaller 
and positive peak in the velocity profile, Em,,, = 5.04, in the vicinity of the location 
where the thread joins the pendant drop, signals a net upward movement of liquid 
out of the thread and into the pendant drop. The interface shape and velocity and 
pressure profiles show that the thread will break at its bottom end first whereas the 
velocity profile makes clear that there is a net loss of liquid and an accompanying 
thinning of the thread as the water bridge nears breakup. The latter observation is 
confirmed by examination of interface shapes and velocity profiles over several time 
steps close to breakup. Although locally large gradients in velocity can give rise to 
large viscous contributions to the total pressure, the capillary contribution to the 
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FIGURE 8. Evolution in time of the dimensionless minimum radius hmi,/R of a bridge of a solution 
of 85% glycerol in water of volume V = 0.04 cm3 and initial slenderness ratio Lo/R = 2 that is 
held captive between two rods of radii R = 0.16 cm and is stretched at a velocity Urn = 0.6 cm s-'. 

pressure 8' dominates the viscous contribution to it for the case of the breaking water 
bridge shown in figure 7. Whereas the viscous contribution to the pressure ranges 
between -11 and 16.86, the capillary contribution ranges between -74.38 and 191.68 
(cf. equation (4)). 

It is observed in the experiments that immediately after the thread breaks at its 
lower end, the now freed end of the thread is accelerated in the upward direction 
by the unbalanced force of surface tension and rolls up to take on a bulbous profile 
(Peregrine, Shoker & Symon 1990). The water thread of figures 7 and 4 is sufficiently 
short at breakup and moves upward with a sufficiently large speed after breakup that 
it collides with and merges with the upper pendant mass of liquid without forming 
any satellite droplets. 

Figure 8 shows the history of the deformation of a bridge of an 85% glycerol 
solution of volume V = 0.04 cm3 and initial slenderness ratio Lo/R = 2 that is held 
captive between two rods of radii R = 0.16 cm that are separated from each other at 
a constant velocity Urn = 0.6 cm s-l. Figure 8 depicts the evolution in time of both the 
dimensionless minimum neck radius, hmi,/R, and bridge profile. Like figure 4, figure 8 
shows that good agreement exists between the experimental measurements and the 
numerical calculations. Although the bridge of the 85% glycerol solution shows a 
dynamic response that is qualitatively similar to that of a water bridge, it exhibits a 
thread that is longer and lasts longer than that of a water bridge on account of the 
larger viscosity of the former bridge. 

Figure 9 shows the interface shape, dimensionless pressure (equation (4)), and 
dimensionless axial velocity inside the bridge of the 85% glycerol solution whose 
history of deformation is depicted in figure 8 as it is nearing breakup. Comparison 
of figures 9 and 7 reveals that the details of the dynamics of the breakup of a bridge 
of an 85% glycerol solution are drastically different from those of a water bridge. 
Figure 9 makes plain that while liquid is flowing out of the thread at both of its ends, 
liquid is also accumulating in the middle of the thread. In contrast to the breakup of 
the water bridge discussed previously, the bridge of an 85% glycerol solution breaks 
so that the two ends of its thread separate from the top and bottom portions of the 
bridge virtually at the same instant in time. The result of this sequence of events is 
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the creation of a small satellite droplet that occupies the region between the two large 
liquid masses that are pendant and sessile on the two rods. 

It is instructive to determine the conditions for transition from breakup of the 
thread at its lower end to nearly simultaneous breakup at both of its ends. When the 
concentration of glycerol is increased to 20%, it is found that although the thread 
is now slightly longer than that of water, the thread again breaks first at its bottom 
end and no satellite is formed (not shown). Figure 10 shows the interface shape, 
dimensionless pressure (equation (4)), and dimensionless axial velocity inside a bridge 
of a 50% glycerol solution as it is nearing breakup. There are two obvious differences 
between the breakup of a bridge of a 50% glycerol solution and that of bridges of 
water and 20% glycerol solution. First, the mean curvature is positive everywhere 
along the interface of the former bridge. Second, the velocity goes through zero at 
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FIGURE 10. As for figure 9 but for a bridge of a solution of 50% glycerol in water. Here = 55.18 
and h,,,/R = 1.01 x 

hmin. Therefore, experiments show that the lower end, although it breaks first, is not 
accelerated in the upward direction as rapidly as in the case of the lower-viscosity 
bridges. On account of the lower speed of the freed end of the thread, the upper 
end of the thread can break before the upward moving thread merges with the liquid 
mass that is pendant from the top rod. However, the satellite that is thereby produced 
is too small to be followed in time with the current experimental setup where the 
camera is focused on the entire bridge. The fate of the satellite, if desired, can of 
course be readily determined by focusing on or magnifying the liquid thread albeit at 
the expense of ignoring the dynamics away from this region. 

The aforementioned dynamics of satellite drops are akin to ones observed in the 
formation of drops from capillaries in a gravitational field (Zhang & Basaran 1995) 
and deformation and breakup of free drops in low Reynolds number flow (Stone, 
Bentley & Leal 1986). Zhang & Basaran (1995) have shown that when the thread 
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breaks first at its bottom end and then at its top end, the dynamics of the resultant 
satellite droplet is complex. The satellite collides with the pendant drop and then 
either merges with or bounces off it. 

Figure 11 shows the interface shape, dimensionless pressure, and dimensionless 
axial velocity inside a bridge of a 70% glycerol solution as it is nearing breakup. 
Figure 11 and the experiments show that similar to the case of a bridge of an 85% 
glycerol solution, the two ends of the thread in this situation too break virtually at 
the same time. A blow up of the regions localized around the threads in these two 
cases (not shown) reveals that the thread length increases but the maximum thickness 
of the thread decreases as the glycerol concentration increases from 70% to 85%. 

Figure 12 shows the interface shape, dimensionless pressure, and dimensionless 
axial velocity inside a bridge of pure glycerol as it is nearing breakup. First, it is 
noteworthy that as viscosity is increased by two orders of magnitude in going from 
figure 7 to figure 9 and then by another order of magnitude in going from figure 9 
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FIGURE 12. As figure 9 but for a pure glycerol bridge. Here = 86.64 and hmi,/R = 1.02 x 

to figure 12 that the localized but large variations in h, 8, and v" occur over larger 
distances. Second, comparison of figure 12 to figures 7 and 9-11 demonstrates the 
role played by increasing viscosity in delaying the breakup of the liquid thread: 
plainly, the thread length increases as viscosity increases. Third, in contrast to both 
the water bridge and the bridges of 20, 50, 70, and 85% glycerol solutions, figure 12 
and the experiments show that the thread of the pure glycerol bridge breaks by 
rupturing at its middle. Figure 12 also shows that the interface profile and the 
pressure field are virtually symmetric and the velocity field is virtually antisymmetric 
about the midpoint of the thread of a pure glycerol bridge nearing breakup, a result 
that accords with the analytical theory of breakup of thin jets under Stokes flow 
conditions recently developed by Papageorgiou (1995a). The experiments show that 
once the thread breaks at its middle, the broken ends roll toward and merge with the 
two supported drops, without forming a satellite drop. 
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LO/R Ld/R v l / v ( % )  
1.75 3.763 86.49 
2.00 3.761 86.52 
2.50 3.761 86.51 
2.75 3.761 86.54 
3.00 3.764 86.52 
3.25 3.760 86.54 
3.50 3.761 86.54 

TABLE 3. Effect of initial dimensionless length or slenderness ratio, Lo/R, of a bridge on its 
dimensionless limiting length, LJR,  and partial volume, Vl /V .  Here the bridge liquid is water, 
R = 0.16 cm, Urn = 0.6 cm s-l, and V = 0.039 cm3. The solutions have been obtained with 1000 
uniformly spaced elements. 

5.2. Limiting length of a bridge 
Although the results presented in $5.1 make plain that certain features of the dynamics 
of stretching liquid bridges remain qualitatively similar from one situation to the next, 
nevertheless (a )  there are quantitative differences between certain other features of the 
dynamics and (b )  the volume of break-off drops, that is the sessile and the pendant 
drops which result upon the breakup of the liquid bridge, vary considerably as some 
of the parameters are varied. The differences in dynamic response under different 
operating conditions are particularly striking during the period of bridge necking and 
breakup and, hence this subsection summarizes the variation of the limiting length of 
liquid bridges, Ld, as a function of the relevant parameters. 

Unless otherwise pointed out, all of the results presented in this subsection have 
been obtained for bridges whose initial lengths equal twice the rod radii, namely 
Lo = 2R. This is because it has been found from both experimental measurements 
and numerical calculations that the initial length (so long as it falls within the stable 
region), has a negligible effect on the salient features of the dynamics of bridge 
stretching and breakup. By way of example, computational results shown in table 3 
demonstrate that both the limiting bridge length and partial volume vary by less than 
about 0.1% as the initial length of a water bridge of I/ = 0.04 cm3 that is stretched 
at U ,  = 0.6 cm s-l is varied from 1.75R to 3.5R. 

Figure 13 shows the variation of the dimensionless limiting length Ld/R of liquid 
bridges of mixtures of glycerol and water as a function of the mass fraction of glycerol. 
The results shown have been obtained holding fixed the rod radii, the velocity of the 
upper rod, and the bridge volume at R = 0.16 cm, U,  = 0.6 cm s-l, and V = 0.04 cm3, 
respectively. Indeed, one can ascertain from figure 13 the composite effects of the 
forces due to surface tension, viscosity, and gravity on the stretching and breakup of 
liquid bridges by the changes in surface tension, viscosity, and density experienced by 
the bridge liquid as the glycerol concentration is varied. It is worth recalling that as 
the glycerol concentration increases, the surface tension falls while the density and 
viscosity rise (cf. table 2). It is well known for static bridges that surface tension and 
density play opposite roles in determining bridge stability on account of the manner 
in which these two parameters affect the gravitational Bond number G = pR2g/o 
(see Coriell et al. 1977). Namely, the maximum length of a stable bridge rises (falls) 
as the value of the surface tension (density) rises. Viscosity, on the other hand, 
plays a great role in prolonging the existence of a stretching bridge by damping or 
even eliminating surface waves that arise on the rapidly stretching interface. These 
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FIGURE 13. Dimensionless limiting length Ld/R of bridges of mixtures of water and glycerol as 
a function of the mass fraction of glycerol. Here I/ = 0.04 cm3, Lo/R = 2, R = 0.16 cm, and 
U,,, = 0.6 cm s-'. 

stabilizing and inhibiting effects of high viscosity have already been demonstrated 
through the discussion accompanying figures 7 and 9-12 and are further illustrated 
by the photograph inserts to figure 13. Hence, changes in surface tension and density 
caused by increasing the glycerol concentration reduce the limiting length Ld of the 
bridge whereas the rise in the viscosity caused by increasing the glycerol concentration 
increases Ld by increasing the length of the liquid thread of the bridge. Therefore, 
under the competition between these opposing effects of viscosity, density, and surface 
tension, it accords with intuition that the limiting length of a stretching bridge should 
attain a minimum when the concentration of the glycerol solutions reaches a critical 
value. In the case shown in figure 13, the minimum is reached when the bridge liquid 
consists of a water-glycerol mixture whose glycerol concentration lies between 50 and 
70%. For solutions of higher concentrations of glycerol, the viscosity of the liquid is 
sufficiently high to inhibit the growth of surface perturbations and thereby allow the 
existence of longer and thinner threads. It is noteworthy that for a bridge of pure 
glycerol the thread extends over a distance exceeding two times the rod radius before 
it breaks, which results in a significant increase in the limiting length of the bridge. 
Based on studies of drop formation from capillaries (Zhang & Basaran 1995), yet even 
longer threads are expected to occur as the disk velocity increases. For example, these 
authors found that for drops of solutions of 85% glycerol in water, the thread length 
can exceed three times the capillary radius when the average velocity of the liquid in 
the capillary becomes sufficiently large and approaches that at which transition from 
dripping to jetting takes place. The effect of the disk velocity on the limiting length 
of liquid bridges is discussed in detail later in this paper. 

Table 2 shows that while the surface tension and density of glycerol-water solutions 
vary by 14% and 26%, respectively, as the concentration of glycerol varies from 0 to 
loo%, the viscosity of these solutions varies by more than three orders of magnitude 
over the same concentration range. These trends provide an alternative way of 
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FIGURE 14. Computational predictions of the dimensionless limiting length Ld/R of bridges as a 
function of the Ohnesqrge number Oh at two different gravitational Bond numbers, G = 0.0 and 
0.5. Here V / R 3  = 3n, U, = 0.028, and Lo/R = 3 for G = 0 and Lo/R = 2 for G = 0.5. 

viewing the results of Figure 13. Over this concentration range, the gravitational 
Bond number varies as 0.34 < G < 0.50 and the dimensionless disk velocity varies 
as 0.028 < om < 0.034, and therefore, given the much wider range over which the 
Ohnesorge number varies, 3 x < Oh d 4.2, one can think of the results of 
figure 13 as showing the variation of Ld/R with Oh while virtually holding fixed both 
G and em. 

Figure 14 shows computational predictions of the variation of the dimensionless 
limiting bridge length Ld/R as a function of the Ohnesorge number Oh at two 
different values of the gravitational Bond number G holding fixed the dimensionless 
disk velocity at om = 0.028 and the dimensionless volume at V / R 3  = 37c. Figure 14 
makes it possible to compare two situations, one where gravitational force is quite 
important relative to surface tension force, G = 0.5, and the other where gravity 
is absent, G = 0. Figure 14 makes plain that the limiting length of a stretching 
bridge increases monotonically as the Ohnesorge number increases due primarily to 
the increasing importance of viscous forces over surface tension forces in making 
possible the realizability of longer threads. As expected, a stretching bridge deforms 
symmetrically about z" = L/2R in the absence of gravity, G = 0. Figure 15 shows 
that when G = 0 and surface tension forces dominate viscous forces, O h  = 0.1, the 
thread simultaneously breaks at both of its ends. Increasing G while holding O h  
fixed destroys the symmetry of the bridge profile and causes the thread to break at 
its lower end first, as shown in figure 14. However, regardless of the value of G, 
figure 14 shows that the thread breaks at its middle when viscous forces dominate 
surface tension ones. 

Figure 16 shows computational predictions of the variation of the dimensionless 
limiting bridge length Ld/R as a function of the gravitational Bond number G at 
two different values of the Ohnesorge number Oh holding fixed the dimensionless 
disk velocity at om = 0.028 and the dimensionless volume at V / R 3  = 37c. Evidently, 



Nonlinear deformation and breakup of stretching liquid bridges 233 

24 

12 

.3 0 

9 
0 
+ 0 0  

-12 

-24 

5 
-E: 
vii 
f 3 

0 

I 

- 

- 

1 

' '  " ' " " ' " " ' " " ' " "  

1000 

similar to static liquid bridges (see, e.g., Coriell et al. 1977), the limiting length of a 
bridge decreases as the gravitational Bond number increases. In addition, the inserts 
to figure 16 show that the shapes and the volumes of the two drops that are supported 
on the upper and the lower rods change substantially as G changes, a point to which 
we return below. 

Because the surface tensions and densities of bridges of mixtures of water and 
glycerol can at most be varied by about 26% (see table 2), the gravitational Bond 
number is most readily changed in the experiments by varying the radii of the 
supporting rods. Figure 17 compares experimental measurements and theoretical 
predictions of the variation of the dimensionless limiting length Ld/R with the rod 
radius R for water bridges of volume I/ = 2nR3 that are stretched at a velocity of 
Urn = 0.6 cm s-'. By varying the rod radius over the wide range 0.05 cm < R < 0.5 cm 
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FIGURE 16. Computational predictions of the dimensionless limiting length Ld/R of bridges as a 
function of the gravitational Bond number G at two different Ohnesorge numbers, Oh = 0.01 and 
1.0. Here V / R 3  = 3a, U, = 0.028, and Lo/R = 3 for G = 0 and Lo/R = 2 for G > 0. 

in figure 17, the gravitational Bond number is varied from 3.3 x to 3.4, while 
the Ohnesorge number and the dimensionless disk velocity vary slightly between 
5.2 x and 1.7 x lop3 and 0.016 and 0.050, respectively. Figure 17 shows that as 
the bridge volume and the length of its thread increase with increasing rod radius, the 
dimensional limiting length of the bridge, Ld, increases monotonically with it while 
the dimensionless limiting length, or the limiting slenderness ratio, Ld/R, shows the 
opposite trend and decreases monotonically with increasing rod radius. Figure 17 
shows that over the interval 0.08 cm < R < 0.32 cm, the dimensionless limiting 
length decreases essentially linearly with increasing R. For bridges with R > 0.32 cm, 
however, the larger gravitational force, which scales as R3, compared to the surface 
tension force, which scales as R2, causes most of the bridge liquid to accumulate 
inside the liquid body that is sessile on the lower rod (see also 95.3) while the volume 
of the liquid cone hanging from the upper rod relative to R3 decreases considerably. 
This decrease in the relative volume of the cone as R increases results in the shape 
of the cone changing gradually from convex to concave (see the photograph inserts 
to figure 17). As in the case of drop formation from capillaries of large radii (see 
Zhang & Basaran 1995), following the first breakup of the thread at its lower point 
the concave shape of the cone and the accompanying increase in the thickness of 
the thread conspire to lower the local mean curvature at the upper part of the 
thread which considerably delays its breakup there. Therefore, in this case, the 
satellite droplet generated subsequent to thread breakup is found to be quite large 
and eventually falls in the direction of gravity and coalesces with the drop that is 
sessile on the lower rod. 

Figure 18 compares experimental measurements and theoretical predictions of the 
variation of the dimensionless limiting length Ld/R as a function of the bridge volume 
V scaled by 7cR3 for water bridges that are captured between two rods of R = 0.16 cm 
and stretched at a velocity of Urn = 0.6 cm s-l. Figure 18 shows that with increasing 
bridge volume, the amount of liquid that ends up on the lower portion of the bridge 
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FIGURE 17. Dimensionless limiting length L d / R  of water bridges as a function of the rod radius R. 

Here Lo/R = 2 and U,,, = 0.6 cm s-'. 

increases relative to that on the upper portion of the bridge, a finding that accords 
with intuition. Although the sizes of both portions of the bridge increase as the 
bridge volume increases, the length of the thread connecting the two portions remains 
virtually unchanged. Therefore, the increase in the limiting bridge length is due solely 
to the increase in the sizes of the pendant and the sessile drops. The rate of change of 
the limiting length with bridge volume is significant when the bridge volume is small 
but levels off as the volume becomes large. 

When a liquid bridge is axially stretched at a low velocity, the shape that the bridge 
assumes at each instant in time closely resembles the equilibrium shape that it would 
have were the moving disk instantaneously brought to rest and sufficient time were 
to elapse for the transients in the bridge profile and velocity and pressure fields to die 
down due to the action of viscosity. Indeed, in this slow mode of stretching, the limiting 
length that the bridge attains exceeds the maximum stable length of a static bridge 
by only a small amount. By contrast, at higher stretching velocities the departure 
of the transient shapes from the equilibrium shapes is large so that the breakup of 
the bridge is delayed significantly and its limiting length is increased substantially 
over the maximum stable length of a static bridge. Figure 19 exhibits the increase in 
the limiting length Ld/R with increasing stretching velocity Urn for water bridges of 
V = 0.04 cm3 and R = 0.16 cm. The rate of increase of the limiting length with Urn is 
low at low stretching velocities but becomes significant when Urn > 1 cm s-l due to 
the increasing importance of inertial force over surface tension force as measured by 
the dimensionless disk velocity. It is noteworthy that as the stretching speed increases, 
the liquid cone hanging from the upper rod shows a small increase in volume while 
becoming greatly elongated whereas the lower portion of the bridge liquid shows a 
small decrease in volume while exhibiting an absence of visible variation in shape (see 
the inserts to figure 19 and 95.3). Additionally, the thread length is found to increase 
as Urn increases. Both of these effects conspire to accelerate the rate of increase of 
the limiting length of the bridge as the stretching velocity increases. 
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FIGURE 19. Dimensionless limiting length Ld/R of water bridges as a function of the rod velocity 
U,. Here V = 0.04 cm3, Lo/R = 2, and R = 0.16 cm. 

Although disk velocities in excess of 0.6 cm s-l are impossible to attain in the 
laboratory with the present setup, the fate of liquid bridges at large stretching 
velocities is explored here with the aid of the numerical model. Figure 20 shows 
the effect of increasing disk velocity on the instantaneous shape of water bridges of 
V = 0.04 cm3 captured between two rods of R = 0.16 at the moment when they 
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are about to break. The computational results depicted in figure 20 show that the 
limiting bridge length increases dramatically as the disk velocity increases from 5 
to 25 cm SKI, reaches a maximum value when Urn = 26.1 cm s-l, and decreases 
at larger disk velocities. The striking increase in the limiting length for 5 cm s-l 
< Urn < 25 cm s-l is clearly due to the increase in the thread length. As a result 
of the large thread, one or more large satellite drops would be expected to be 
created subsequent to the thread breakup (cf. Zhang & Basaran 1995). Perhaps 
even more interesting are the changes in the evolution in time of the bridge shape 
for disk velocities near this maximum and the manner of bridge breakup with 
increasing disk velocity. As discussed in 95.1, when Urn d 25.8 cm s-l, the thread 
of a water bridge consistently breaks first at its lower end (see also figure 2Oa-j) 
due to the larger capillary pressure that develops there on account of the larger 
curvature of the interface in the vicinity of where h = hma. However, as the disk 
velocity continues to increase over a critical value, which equals 26.1 cm s-l in 
this case, the liquid cone hanging from the upper rod moves upward so rapidly 
that it breaks from the rest of the bridge before the lower portion of the liquid 
attached to the bottom rod can assume a spherical profile and lead to the breakup 
of the lower end of the thread. Evidently, at the critical disk velocity, which 
equals the disk velocity at which Ld/R is a maximum, the thread breaks at its 
two ends simultaneously, as shown in figure 20(g). This remarkable switch in the 
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FIGURE 21. The effect of rod velocity on the deformation history of water bridges with emphasis 
on the time period close to and at breakup: (a) Urn = 25.8 cm s-l, ( b )  Urn = 26.1 cm s-l, and (c) 
Urn = 26.5 cm s-'. Here the bridges have volume I/ = 0.04 cm3 and are held captive between two 
rods of radii R = 0.16 cm. 

breakup sequence is explicitly demonstrated in figure 21 by showing details of the 
shape evolutions of three water bridges that are being stretched at Urn = 25.8, 
26.1 and 26.5 cm s-l, corresponding to figure 20Kg,h), respectively. Zhang & 
Basaran (1996) have recently reported a similar switch in the breakup sequence 
of liquid threads in drop formation from capillaries in the presence of an electric 
field. 
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FIGURE 22. Partial volume v / V  of water bridges as a function of rod radius R. Here the 
initial slenderness ratio and the disk velocity are held fixed at Lo/R = 2 and U, = 0.6 cm s-', 
respectively. 

5.3. Partial volumes of liquid bridges 

Figure 22 shows experimental measurements and computational predictions of the 
variation of the partial volume as a function of the radii of the two rods. Here the 
liquid is water, the rods are separated at a fixed velocity of Urn = 0.6 cm s-l, and 
the bridge volume V = 2nR3. By varying the rod size from R = 0.08 cm to 0.32 cm, 
the gravitational Bond number in figure 22 is varied by a factor of 16. Figure 22 
shows that the partial volume Vl/V increases as the relative importance of gravity 
to surface tension force increases. This finding accords with intuition because as the 
relative importance of gravitational force increases by using rods of increasing radii, 
more liquid accumulates on the bottom portion of the bridge before breakup (cf. 
figure 17). Figure 22 shows that the error incurred in the computational prediction of 
the partial volume relative to the experimentally measured value is larger than that 
incurred in the prediction of the limiting length of bridges. The larger errors between 
computed and measured values of partial volume are attributable to the larger errors 
that are made in the experimental determination of the bridge profile h(z )  which 
is then integrated to calculate the experimental value of b / V .  Nevertheless, the 
maximum difference between the predicted and the experimentally measured value of 
partial volume is still smaller than 4%. 

Figure 23 shows experimental measurements and computational predictions of the 
variation of the partial volume as a function of the total bridge volume V scaled 
by nR3. Here the liquid is again water, the radii of the rods are kept constant at 
R = 0.16 cm, and the rods are separated at a fixed velocity of U,,, = 0.6 cm s-l. As 
V/nR3 increases, the importance of the force of gravity relative to that of surface 
tension increases: this enlarges the volume of the sessile drop prior to bridge breakup 
(cf. figure 18) and, therefore, increases the partial volume. It is noteworthy that the rate 
of increase of the partial volume due to an increase in the gravitational force caused 
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FIGURE 23. Partial volume V,/V of water bridges as a function of the dimensionless volume of 
the bridges divided by n, V/7tR3. The initial slenderness ratio Lo/R equals the abscissa value for 
V/nR3  < 3 and it equals 3 for V/nR3  3. Here the disk radii and the disk velocity are held fixed 
at R = 0.16 cm and U,,, = 0.6 cm s-', respectively. 

by using either rods of larger radii (cf. figure 22) or liquid bridges of larger volumes 
(cf. figure 23) slows and approaches an asymptote as R or V/7cR3 becomes large. 

Whereas the rod velocity has a big influence on the limiting length of liquid 
bridges, figure 24 shows that it has a small influence on their partial volumes. The 
computational results shown in figure 24 are for water bridges of volume V = 0.04 cm3 
that are held captive between rods of radii R = 0.16 cm. Owing to the increase in 
the volume of and the elongation suffered by the liquid cone hanging from the upper 
rod as the disk velocity increases (cf. the inserts to figure 19), the volume enclosed by 
the lower portion of the bridge decreases slightly as Urn increases. Consequently, the 
partial volume of the bridges are found to decrease by only 8.5% as the rod velocity 
increases from 0.04 cm s-l to 5 cm s-'. Moreover, as shown in figures 20 and 21, if 
the disk velocity is sufficiently large, the liquid thread and the satellite droplets that 
they give rise to can enclose volumes that are not negligible compared to those of the 
pendant and the sessile drops. Investigation of the fate and volume of the satellite 
droplets in this situation is left open as problems for future research. 

Figure 25 shows the effect of glycerol mass fraction on the partial volume of liquid 
bridges. The computational results shown have been obtained for bridges of fixed 
volume V = 0.04 cm3 held captive between disks of radii R = 0.16 cm that are 
separated from each other at a constant velocity of Urn = 0.6 cm s-'. First, it is 
noteworthy that the variation of Vl/V as a function of the glycerol concentration 
is the opposite of the variation of Ld/R as a function of glycerol concentration 
presented in figure 13, namely the curves in figures 25 and 13 are, qualitatively 
speaking, virtually vertical reflections of each other. Here, as in figure 13, the physical 
properties of the bridge liquid play an interesting role in setting the variation of 
the partial volume with the glycerol mass fraction. At low glycerol concentrations, 
the partial volume increases with increasing concentration because the response is 
controlled by an increase in the importance of the force of gravity relative to that 



Nonlinear deformation and breakup of stretching liquid bridges 24 1 

80 
0 1 2 3 4 

U,,, (cm sd)  
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velocity U,. Here the drop volume and the initial slenderness ratio are held fixed at V = 0.04 cm3 
and LoIR = 2, respectively. 

of surface tension due to the accompanying increase in the density of the bridge 
liquid. At large glycerol concentrations, however, the response is determined by the 
dimensionless disk velocity which increases as the glycerol concentration increases 
and causes the partial volume to decrease. 

6.  Concluding remarks 
In this paper, we have probed through both theoretical and experimental means the 

effects of inertial, viscous, gravitational, and surface tension forces on the dynamics 
of stretching liquid bridges. According to the foregoing results, the maximum or 
limiting length that a stretching liquid bridge attains at breakup increases significantly 
with increasing liquid viscosity and increasing stretching velocity. By contrast, the 
maximum slenderness ratio that a bridge can attain prior to breaking decreases 
significantly as rod radius increases. Subsequent to the breakup of a bridge, two large 
drops are generated such that one is pendant from the top moving rod and the other 
is sessile on the stationary bottom rod. Evidently, the manner in which the bridge 
volume is distributed between these two drops is a strong function of the relative 
importance of viscous, inertial, and gravitational forces to surface tension forces. 

The interface dynamics studied in some detail in this paper clearly has implications 
in other applications. In particular, one motivation for the present work comes from 
the desire to improve our understanding of drop formation from capillaries because 
stretching liquid bridges provide a convenient way to subject a liquid thread to a 
well-controlled extension. Recently, Zhang & Basaran (1996) have carried out a 
detailed study of the dynamics of drop formation in the presence of an electric field. 
These authors have shown that when the field strength exceeds a critical value, the 
mode of thread breakup switches from its bottom to its top. Among other things, 
one consequence of increasing the field strength is that it increases the speed with 
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FIGURE 25. Computed values of the partial volume Vl/V of bridges of glycerol-water mixtures as 
a function of the mass fraction of glycerol. Here the drop volume, the initial slenderness ratio, and 
the disk velocity are held fixed at V = 0.04 cm3, Lo/R = 2, and Urn = 0.6 cm s-’, respectively. 

which a liquid thread is stretched. Therefore, the present computations make plain 
that the mechanism of the switching of thread rupture observed in experiments on 
drop formation in electric fields is due to the rise of the ratio of inertial forces to 
surface tension forces beyond some critical value. 

The use of the one-dimensional model to simulate the dynamics of the entire 
bridge deformation and breakup process hinges on the slender jet approximation 
being valid throughout the motion. However, comparison of computational results 
with experimental measurements shows that while the agreement between the two is 
excellent with respect to the limiting length of the bridge, a relatively larger deviation 
between the two arises with respect to the partial volume of bridges after breakup. 
Recently, Schulkes (1993~)  has examined the validity of one-dimensional models 
based on the inviscid slice model (Lee 1974) and the Cosserat continuum without 
viscosity (Green 1976) by comparing their predictions to ones obtained from two- 
dimensional potential flow calculations carried out with the boundary integral method 
in the problem of the breakup of a stationary liquid bridge. Schulkes has shown that 
the one-dimensional models are in general ill-suited to describe the dynamics of 
inviscid liquid bridges as they near breakup. Therefore, a goal of future research 
is to examine the dynamics of the breakup of stretching liquid bridges with fully 
two-dimensional models with viscosity using the Galerkin/finite element method (cf. 
Basaran & DePaoli 1994). 

Electric fields can be used to stabilize non-stretching liquid bridges and thereby 
allow them to attain much longer lengths prior to breakup (Gonzalez et al. 1989; 
Sankaran & Saville 1993). An extensive study of the effects of an externally applied 
electric field on the dynamics of the deformation and breakup of stretching liquid 
bridges is also underway in our laboratory. When an electric field is imposed parallel 
to the axis of symmetry of a bridge of a dielectric liquid, both the limiting length and 
the partial volume of the bridge increase as the field strength increases. By contrast, 
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when the electric field is applied perpendicular to the axis of symmetry of the bridge, 
the electric field plays a destabilizing role and the limiting length of a bridge decreases 
as the field strength increases. 
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